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Abstract: This paper discusses two control issues in a novel design of radio telescope. 
The receiver of the telescope is held aloft by an aerostat and tethered to the ground by a 
number of cables, each controlled by a winch to allow positioning of the receiver. This 
paper discusses the gain optimization for stationkeeping control and compares 
approaches for slewing the receiver through gross motions. Copyright © 2004 IFAC 
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1. INTRODUTION 
 
Radio astronomers from around the world have 
recently advocated the need for a new radio 
telescope with a collecting area of 106 m2 which is 
dubbed the Square Kilometer Array (SKA)  (van de 
Weygaert and van Albada, 1996). A conceptual 
design from the National Research Council of 
Canada’s Herzberg Institute of Astrophysics consists 
of an array of about 50 very large antennas. The 
novel antenna design, depicted in Figure 1, is called 
the Large Adaptive Reflector (LAR) (Fitzsimmons, 
et al., 2000). The LAR design includes two central 
components. The first is a 200 m diameter parabolic 
reflector, with a focal length of 500 m, composed of 
actuated panels, mounted on the ground. The second 
is a focal package held aloft at a height of 500 meters 
by a large helium balloon (aerostat) and a system of 
three or more taut tethers. This tension structure is 
large enough that it filters out all but the lowest 

frequency turbulence, and stiff enough that it 
effectively resists wind forces. The telescope is 
steered by modifying the shape of the reflector, and 
simultaneously changing the lengths of the tethers 
with winches so that the receiver is positioned on the 
surface of a hemisphere of radius 500 m, centered at 
the reflector. The variable-length tethers also allow 
some measure of control of the receiver position in 
response to disturbances such as wind gusts 
(Fitzsimmons, et al., 2000; Nahon, et al., 2002).  
 
A one-third scale prototype of the multi-tethered 
aerostat subsystem for LAR has been constructed as 
a proof of concept for this design (Lambert, et al., 
2003). In parallel, a computer simulation has been 
developed. The simulation can be used to weigh 
alternative design options, determine how typical 
gusts are likely to affect the receiver positioning 
accuracy, and perform preliminary evaluation of the 
winch control algorithms. 

Fig. 1. LAR Design Concept. 
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Most literature on tethered aerostat systems has 
considered the open-loop (uncontrolled) behaviour of 
a streamlined aerostat held down by a single tether. 
Some prior work at the National Research Council of 
Canada dealt with the static or steady-state 
performance of a triple-tethered aerostat system 
(Fitzsimmons, et al., 2000). Another interesting 
study is an experiment conducted by the US Air 
Force on the dynamic behavior of a tri-tethered 
aerostat (Leclaire and Rice, 1973). 
 
This paper discusses some control issues in the LAR 
tethered aerostat system. Two types of controlled 
maneuvers are required with this system: 
stationkeeping, i.e. prescribing a fixed position for 
the payload, and slewing, i.e. moving the payload 
from one point to another. In the case of 
stationkeeping, the gain optimization methodology is 
discussed. In the case of slewing, the paper compares 
various methods for accomplishing such large scale 
motion. Numerical results are presented to show the 
effectiveness of the proposed approaches. 
 
 

2. SYSTEM MODEL 
 
The dynamics model of this multi-tethered aerostat 
system has been discussed extensively elsewhere, but 
is briefly reviewed here.  Figure 2 shows a layout of 
the system, which includes an aerostat, a confluence 
point where all tethers meet and the payload 
(receiver) is located, a leash (the single cable 
connecting the aerostat to the confluence point), 
three to six tethers connecting the confluence point 
to the ground, and winches at the base of each tether. 
 
The aerostat may be spherical or streamlined. The 
spherical aerostat is modeled as a sphere whose drag 
varies with Reynolds number (Nahon, et al., 2002). 
Modeling of the streamlined aerostat is more 
involved and is discussed in (Lambert and Nahon, 
2003)---a component breakdown approach is used to 
model the aerodynamic behavior of the hull and each 
fin. These are then summed to find the overall 
behavior of the aerostat. The confluence point is 
modeled as a sphere, similarly to the spherical 
aerostat (Nahon, et al., 2002). 
 
The cable is discretized into elements and the mass 
of each element is lumped at its endpoints (Lambert 
and Nahon, 2003). The equations of motion for each 
lumped mass are then formulated, including the 
internal forces (stiffness, damping) and external 
forces (aerodynamic, weight). 
 
The entire system of second-order nonlinear 
dynamics equations is assembled, put into first order 
form, and then solved using a fourth-order Runge-
Kutta integration routine (Press, et al., 1992). 
 
The disturbances to the system are due to the 
turbulent wind. This is modeled using a mean wind 
varying with height, due to the earth's planetary 
boundary layer. Superimposed on this, are turbulent 
gusts with a von Karman spectrum. Further details  
given in (Nahon, et al., 2002). 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 2. System Layout. 

 
 

3. STATIONKEEPING 
 
The closed-loop stationkeeping controller uses 
feedback of the measured payload position to alter 
the length of the tethers, thus compensating for wind 
disturbances. The error signal for each tether is 
evaluated as 
 

WidWii tte pppp −−−= )()(            (1) 
 
where pd is the desired payload position, p is the 
actual location, and pWi is the winch position. The 
motivation behind this approach is that, if the 
distance from each winch to the payload is correct, 
then the payload lies on a sphere of radius 

Wid pp −  centered at the winch. If all the 
payload-winch distances are correct, then the 
payload lies at the intersection of those spheres 
which defines the correct desired location of the 
payload in 3-D space. Using a PID control law, the 
change in tether length needed to minimize ei can be 
written as 
 

( )∫++−=∆ dtekekekL iIiDiPi &           (2) 
 
or,  in terms of velocity as 
 

( )iIiDiPi ekekekL ++−= &&&&              (3) 
 
where kP, kD, kI are, respectively, the proportional, 
derivative and integral gains. The three gains are the 
same for all tethers, as no advantage was found for 
them to be different. For practical reasons, the PID 
defined has been implemented in its derivative form, 
equation (3), i.e. on the tether speed. The change in 
the tether length is then determined as integral of the 
tether speed. 
 
 
3.1 Gain Optimization 
 
A procedure to optimize the PID gains has been 
developed. The total error is first defined as 
 

dppe −=                             (4) 
 



where p is the actual payload position and pd is the 
desired payload position. It is useful to make a 
distinction between the components of this vector in 
and out of the focal plane. The focal plane is defined 
as the local tangent plane to the focal hemisphere, at 
the given zenith and azimuth angles. If e is expressed 
in the inertial frame, then the components in the 
focal plane, ef1 and ef2, and out of the focal plane, eof, 
are given by 
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where θAZ and θZA are, respectively, the azimuth and 
the zenith angles (Figure 1). We define the error in 
the focal plane as 
 

2
2

2
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The objective function we wish to minimize is 
 

( )∫ +=
ft

ofofff dtewewf
0

             (7) 

 
where wf and wof are the corresponding weights, and 
the integral is evaluated between zero and the final 
time tf. Thus, we are minimizing a weighted sum of 
the components of the total error over a simulation of 
duration tf. The integral in (7) is computed using a 
trapezoidal rule (Press, et al., 1992). 
 
We impose the following constraints on the gains to 
ensure their magnitudes remain reasonable 
 

IDPikkk i ,,              maxmin =≤≤       (8) 
 
where kmin and kmax are the lower and upper bounds, 
respectively. These constraints are imposed using a 
penalty function of the form 
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where i = P, D, I. Similarly, a bound is imposed on 
the maximum power needed at any one winch, i.e., 
 

[ ]( )2max)max(,0max PPiP −=Φ            (10) 
 
where Pmax is the upper bound. Finally, if the system 
becomes unstable at time t because of the gains, 
another penalty function is added, in the form 
 

( )2fu tt −=Φ                           (11) 
 
Thus, the function used for the optimization is 
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    (12) 
Powell’s method (Press, et al., 1992) was used to 
perform the optimization. The dynamics simulation 

was embedded within the optimizer to allow the 
objective function to be evaluated. At each iteration 
of the optimizer, a simulation was run to evaluate 
(12). Depending on the results, the optimizer would 
adjust the gains, until eventually an optimal set of 
gains was found. 
 
 
3.2 Numerical Results 
 
Before proceeding with the optimization, we first 
performed a sensitivity study to see how the 
maximum total error and the maximum (positive) 
power vary with the main parameters, i.e. zenith 
angle, azimuth angle, wind speed and wind direction 
(the error considered here is the total error, defined 
in (4)). The system considered consisted of  a full 
scale tri-tether configuration with a streamlined 
aerostat, constant wind (but with different values), 
turbulence and PID gains of kP = 5, kD = 3, kI = 1. 
Simulations were run for tf = 100 seconds. 
 
Table 1 shows the maximum error and power 
changing the wind speed, keeping fixed the other 
parameters (zenith and azimuth angles equal to zero 
and wind direction equal to 180°). As expected, both 
increase monotonically as the wind speed increases. 
 
Table 1. Error & Power Variation with Wind Speed 

 
Wind speed 

[m/s] 
Max. error 

[cm] 
Max. power 

[kW] 
0 0 0 
2 2.2 0.42 
4 7.2 1.89 
6 13.0 6.35 
8 29.8 10.69 

10 43.7 20.03 
 
Table 2 shows the maximum error and power with 
changes in the zenith angle, keeping the other 
parameters fixed (azimuth angle at zero, wind speed 
at 10 m/s and wind direction of 180°). While the 
power increases monotonically with the zenith angle, 
the progression of  the error is less clear. 
 
Table 2. Error & Power Variation with Zenith Angle 
 

Zenith [°] Max. error [cm] Max. power [kW] 
0 43.7 20.03 
10 46.8 22.07 
20 48.8 23.63 
30 45.7 26.26 
40 49.8 28.31 
50 53.0 33.39 
60 75.9 36.98 

 
Figure 3 shows a plot of the maximum error and the 
maximum power for different azimuth angles and 
wind directions. The other two parameters were kept 
constant at their worst case values (wind speed of 10 
m/s and zenith angle of 60°). In the plot, each curve 
has been shifted by an angle equal to the 
corresponding azimuth angle, to show that the shapes 
are quite similar. Thus, the actual wind direction for 
the curve with azimuth θAZ is given by the wind 
direction in the plot plus θAZ. For the power this 
similarity is less well defined. 
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Fig. 3. Effect of Azimuth and Wind Direction 
 
The worst configuration in term of maximum error 
was at 60° in zenith and azimuth, 10 m/s wind speed 
and 150° wind direction. Using this configuration, 
we performed a gain optimization, starting from gain 
values of kP = 5, kD = 3, kI = 1. Constraints of kmin = 0 
and kmax = 10, and Pmax = 75 kW were used. For the 
errors in and out of the focal plane, weights of wf = 
wof = 0.1 were used. 
 
Figure 4 shows a comparison of the total error with 
the optimal gains of kP = 9.9, kD = 10, kI = 8.1 and 
with the unoptimized gains of kP = 5, kD = 3, kI = 1. 
The maximum winch power with the optimized gains 
was found to be 71.2 kW. As can be seen, the 
optimization of the gains results in a significant 
decrease of the errors in payload motion. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Comparison of Payload Errors 
 

4.  SLEWING CONTROL 
 
Slewing refers to the gross motion of the payload 
from one point to another. This is done in order to 
observe a different location in the sky, i.e., the 
incoming ray in Figure 1 is to be rotated to another 
location. When this is done, the reflector’s curvature 
is changed to have a different focus, but one which 
remains on the surface of a virtual hemisphere of 500 
m diameter, centered at the center of the reflector. 
The receiver (payload) must correspondingly be 
moved to that focus. It is important for slewing 
maneuvers to be accomplished quickly since any 
time spent slewing reduces observation time. 
 
 
4.1 Trajectory 
 
To move the desired payload position between two 
points, two different trajectories were considered 
(see Figure 5). The lower part of the figure is the 
section along axis u. 
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Fig. 5. Slewing Trajectories 
 
In procedure (a) the desired payload position is 
moved from point A to point B along the shortest 
path possible, i.e. a straight line connecting the two 
points. The coordinates of points A, (xA, yA, zA), and 
B, (xB, yB, zB), can be found from the corresponding 
focal length, zenith and azimuth angles (Figure 1), 
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The generic position along this line, point D, is then 
found using 
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where f is a function representing the time-profile 
(linear or sinusoidal ramp) used for the maneuver. 
Finally, the  spherical co-ordinates for point D at 
each instant during the maneuver  can be found from 
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In procedure (b), the desired payload position is 
moved on a trajectory on the surface of the virtual 
hemisphere between A and B. This path is obtained 
by projecting the straight line between A and B 
vertically onto the hemisphere defined by the focal 
length R. The position along this line, point T, is 
obtained using the original point D as shown in 
Figure 5. Its coordinates are defined by (xd, yd, zt), 
with zt given by 
 

( )22
ddt yxRz +−=                         (16) 

 
It should be noted that these two procedures just 
change the desired payload position, but not the 
actual payload position. To force the payload to 
follow the change in the desired payload position, a 
controller must be used. The control may be open-
loop or closed-loop. In each case the tether lengths 
are changed to keep the actual payload position as 
close as possible to the desired position. 
 
 
4.2 Open-Loop Slewing 
 
The open-loop controller works by changing the 
length of the tethers to follow the change in the 
payload’s desired position, without using any 
feedback on the actual payload position. Figure 6 
shows the scheme used. 
 
Using one of the two procedures illustrated in the 
previous section, the desired payload position is 
changed from pd(t0) to pd (t0+∆t) with a known 
function of time. The change in the ith tether length is 
assumed to be 
 

( )WidWidPii tttkL pppp −−−∆+=∆ )()( 00   (17) 
 
If the angle α is small (i.e. the winch is far from the 
payload and/or the time ∆t is small), this is a good 
approximation. Note that when the desired payload 
position reaches point B, the tether stops changing its 
length, but the length at that time is not necessarily 
the length corresponding to a static analysis at point 
B. This means that the payload will not be exactly at 
the point B, but close to it. Usually the error in the 
final payload position was found to be less than 1%. 
The gain kP, usually equal to 1, can be used to reduce 
this error. 
 
A second method for open-loop control of the system 
is to directly change the length of each tether. 

α

L0

L0+∆L

pd (t0)

pd (t0+∆t)

Winch (pW)
  

Fig. 6. Open Loop Slewing 
 
For the ith tether, if LAi and LBi are the tether lengths 
when the payload is in positions A and B, 
respectively, the function applied is 
 

( )AiBii LLfL −=∆                         (18) 
 
where, again f denotes the time profile. In this case if 
the tether lengths corresponding to the static position 
of points A and B are known exactly, then the final 
position will be reached exactly.  
 
 
4.3 Open-Loop Slewing Results 
 
In this Section, we compare the open-loop slewing 
results with different control approaches. In all cases, 
the full scale tri-tethered configuration and the 
streamlined aerostat have been used. Note that in the 
following plots the positions are actual positions and 
not referred to the initial static position. 
 
The first example is an open-loop slewing between 
three points. Positions and corresponding tether 
lengths in the static configurations are: 
 
Table 3. Tether Lengths in Different Configurations 

 
Point 

(Zenith/Azimuth) 
L1 [m] L2 [m] L3 [m] 

A (60°/60°) 1076.21 1076.21 1652.46 
B (30°/-130°) 1438.68 1374.06 1045.37 

C (0/0) 1297.64 1297.64 1297.64 
 
Slewing between points A and B was performed 
using a sinusoidal ramp, between 0 and 750 seconds. 
After 50 seconds a second slewing was performed 
between points B and C, again using a sinusoidal 
ramp over 750 seconds. No wind or turbulence was 
present. The first type of open loop controller was 
used (equation (17)), with all the gains equal to 1. 
First, the two trajectories illustrated in Figure 5 were 
compared, i.e. moving the payload along the shortest 
path and moving the payload along the circular path. 
Small to moderate differences were present in the 
tether length, speed and tension. Of course the z-
position for the payload was different, while 
positions in x and y were basically the same. The 
maximum power in the first trajectory was found to 
be 46.0 kW, while in the second case it was 35.7 kW.  
As explained in Section 4.2, due to the approach 
used to calculate the length changes, the actual 
tethers length at points B and C do not correspond to 
the values found with a static analysis at those 



points. The actual lengths were all within 0.3% of the 
correct lengths, and this resulted in a position error 
of about 5 m at the target locations. 
 
The same maneuver was also performed with a 10 
m/s wind. It was found that the wind tended to damp 
the aerostat oscillations. The time used to complete 
the maneuver also has a great influence on the 
results. The longer this time, the less power is 
required and the fewer oscillations occur. 
 
The next example is the same maneuver (from point 
A to B then to C), but performed using the second 
type of open-loop controller, i.e. directly changing 
the length of the tethers (equation 18). The variations 
in length are: 
 

Table 4. Length Changes for Open-Loop Slewing 
 

Point 
(Zenith/Azimuth) 

∆L1 [m] ∆L2 [m] ∆L3 [m] 

A (60°/60°) 
B (30°/-130°) 

C (0/0) 

+362.47 
-141.04 

+297.85 
-76.42 

-607.09 
+252.27 

 
These length changes were used with the same time 
profile used to move the payload with the first 
controller. Results were compared to open-loop 
slewing with equation (17) and trajectory (a), used in 
the previous example. The differences were found to 
be relatively minor---some minor oscillations in 
tether tensions were observed with equation (18), but 
this controller brought the system closer to the 
desired configuration than did the controller with 
equation (17). 
 
 
4.4 Closed-Loop Slewing 
 
A closed-loop slewing maneuver can be achieved by 
changing the desired payload position and using the 
PID control law given by equation (1). The same 
maneuver used in Section 4.3 with trajectory (a) was 
considered. We compared the closed loop controller 
with gains of kP = 5, kD = 3, kI = 1, to the first open-
loop controller. Results were generally similar, and 
the maximum power was 46.2 kW. Significant 
differences were found in the total error (Figure 7). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7. Open-Loop, Closed-Loop & Hybrid Slewing 
 
When the two maneuvers are finished, the closed-
loop controller brings the system closer to the 
desired configuration than the open loop controller. 
 

Considering the preceding results, and noting that 
tracking a particular payload trajectory is not usually 
crucial during a slewing maneuver, a hybrid of the 
two methods is also shown. Here, the slewing 
maneuver is performed in open loop, a PID is then 
activated at 750 < t < 800 s and t > 1550 s (the PID 
gains are activated using a sinusoidal ramp of 5 
seconds). Figure 7 shows the corresponding error. 
The hybrid controller allows the error to return to 
zero at the target points but allows larger error during 
slewing. Because the large-scale slewing is done in 
open-loop, the chance of encountering instabilities is 
much reduced. 
 
 

5. CONCLUSION 
 
This paper discussed two issues related to the control 
of a novel design of radio telescope: the optimization 
of stationkeeping control gains, and slewing control. 
A gradient descent scheme was used to find optimal 
gains for the stationkeeping controller, and these 
resulted in substantially better performance than with 
the unoptimized gains. 
 
For slewing control, it was found that a curvilinear 
trajectory between the two target points resulted in 
lower power required. Furthermore, good results 
were obtained using an open-loop controller during 
the slewing, and then activating a closed-loop 
controller on reaching the target point. 
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